
Systems Thinking + Web Security
January 10, 2013 Michael Stone mistone@akamai.com

Desiderata
- A convincing theory of accident causality, reporting, and prevention; e.g.,

· able to adequately explain known historical accidents,
· supporting counterfactual reasoning, feedback loops, delay, and
· sensitive to known cognitive biases and theories of human behavior

- Reproducible analyses.
- A teachable analysis method.

Definitions
safety: absence of accidents

accident: an unplanned and unacceptable loss event
hazard: system conditions in which accidents are possible

constraint: a condition (control objective) required to prevent an accident
Rubric

System Diagram: what’s the context? who are we relying on to behave in accordance with our protocol?
Goals: availability, authentication, secrecy, integrity, access control, resource usage, control-

flow integrity, anonymity, concealment, privacy, ...
Adversary Powers: reading, writing, spamming, spoofing, fuzzing, phishing, encrypting, decrypting, con-

catenating, parsing, delaying, dropping, reordering
Control System: what work have we done to make ourselves safe?

Qualities
Awareness Are people deeply aware of their decisions’ consequences?

Justification Are the results of each decision defensible?
Economy Are things as simple as possible but no simpler?

Craft Is the work good?
Coherence Does each successive decision harmonize with previous ones?

Modes, Edges, and Gaps
mode: a pattern of system behavior with distinctive requirements for safe operation; i.e., “fly-

ing”, “gliding”, “taxi-ing”, and “parked”. Mode confusion can be extremely dangerous.
edge: boundaries between modes; i.e., “take-off”, “stall”, “low-fuel”.
gaps: an area of ignorance where contradictions or unsafe interactions may lurk.

Training Aids
1. Engineering a Safer World, Nancy Leveson, MIT Press, 2012.

(Available at no cost from mitpress.com.)
2. Read the security considerations discussions of well-studied problems like writing

MTAs (Bernstein), censorship-resistant communication systems (Dingledine & Math-
ewson), and voting systems (Rubin, Felten, ...).

3. Read about famous attacks and broken software (Stuxnet, Aurora, Melissa, Flash,
Sendmail, ...). How did they work, what did they achieve, and what conditions made
them possible?

4. Practice breaking things. There are some great “swiss-cheese apps” and puzzle sites
(Google Gruyere, 0x41414141.com) designed for this purpose.

5. Read other people’s code. Learn to distinguish good code from bad code (kernel, libc,
apache, X.org, postfix, sqlite, lua, ...).

6. Learn more programming languages (C, C++, ML, Lisp, Prolog) so that you learn
about what problems and solutions exist.

7. Learn to write proofs, essays, and scientific reports, so you know what “evidence”
means.



clojars.org example
January 10, 2013 Michael Stone mistone@akamai.com

System Diagram

Friend

Ring

Leiningen

Resolver

Jetty

JVM

Browser

clojars.org

...

Safety Constraint

Goals

Adversary Powers

Control System

Note
Clojure Logo: Copyright 2012 User:Compfreak7, distributed under CC-BY-SA 3.0 Unported
http://commons.wikimedia.org/wiki/File:Clojure Programming Language Logo Icon SVG.svg


