Testing MathML

Inline math: \sin(x_n^2). And displayed math:

f(\epsilon) = \frac{1}{1 + \exp\left(\frac{\varepsilon}{k_\text{B}T}\right)} N = \frac{\text{number of apples}}{7} \mathbf{M} = \left(\begin{matrix}a&b\\c&d\end{matrix}\right)

We have |\mathbf{M}| = ad - bc.

\int_0^1 x^n dx = \frac{1}{n + 1} \sum_{n=1}^m n = \frac{m(m+1)}{2}

Quantum mechanics:

-\frac{1}{2}\nabla^2 \psi + v \psi = \varepsilon \psi

Math split over two lines:

g(\alpha) = & (1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4\\             & + \alpha^5) f(x) = \left\{   \begin{matrix}     1 - x, & x < 1 \\     0,     & x > 1   \end{matrix}\right.